(5y^4+6y^2-1)/(y-1/5)

Simple and best practice solution for (5y^4+6y^2-1)/(y-1/5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (5y^4+6y^2-1)/(y-1/5) equation:


D( y )

y-(1/5) = 0

y-(1/5) = 0

y-(1/5) = 0

y-1/5 = 0

y-1/5 = 0 // + 1/5

y = 1/5

y in (-oo:1/5) U (1/5:+oo)

(5*y^4+6*y^2-1)/(y-(1/5)) = 0

(5*y^4+6*y^2-1)/(y-1/5) = 0

(5*y^4+6*y^2-1)/(y-(1/5)) = 0 // * y-(1/5)

5*y^4+6*y^2-1 = 0

t_1 = y^2

5*t_1^2+6*t_1^1-1 = 0

5*t_1^2+6*t_1-1 = 0

DELTA = 6^2-(-1*4*5)

DELTA = 56

DELTA > 0

t_1 = (56^(1/2)-6)/(2*5) or t_1 = (-56^(1/2)-6)/(2*5)

t_1 = (2*14^(1/2)-6)/10 or t_1 = (-2*14^(1/2)-6)/10

t_1 = (-2*14^(1/2)-6)/10

y^2-((-2*14^(1/2)-6)/10) = 0

1*y^2 = (-2*14^(1/2)-6)/10 // : 1

y^2 = (-2*14^(1/2)-6)/10

t_1 = (2*14^(1/2)-6)/10

y^2-((2*14^(1/2)-6)/10) = 0

1*y^2 = (2*14^(1/2)-6)/10 // : 1

y^2 = (2*14^(1/2)-6)/10

y^2 = (2*14^(1/2)-6)/10 // ^ 1/2

abs(y) = ((2*14^(1/2)-6)^(1/2))/(10^(1/2))

y = ((2*14^(1/2)-6)^(1/2))/(10^(1/2)) or y = -(((2*14^(1/2)-6)^(1/2))/(10^(1/2)))

y in { ((2*14^(1/2)-6)^(1/2))/(10^(1/2)), -(((2*14^(1/2)-6)^(1/2))/(10^(1/2))) }

See similar equations:

| 3e^2x-3=15 | | s-9=p | | 2x-2=3x-7 | | Q/40=20 | | p=s-9 | | y=x/16 | | 5y+5=x | | 15(a-9)=-8-7 | | 20x-5d=8 | | 3x+5=8x+9 | | -5(y+2)=9y+32 | | -3x+44=4(x+4) | | 45a-3778=54 | | -6(x-8)=2x-32 | | 4x+3x-12x-18=14 | | 36/4=7x+3(-4X) | | 4(v-6)-7v=-6 | | 8y-11=6y+9 | | -4x+10=14 | | 2x+7x^2-5= | | -5.872+(-5.1)/1.5= | | 3(y+3)-5y=19 | | 5(2+3x)=1-7x+3 | | 10n+13-9n-15=7 | | x*7(x-4)=20x | | -11=-8x+5(x-7) | | 6x=(20-6x)^1/2 | | 6x/5+12 | | (14-6)/2 | | 11=w/8.96+4 | | (a/a+5)-2=(3a/a+5) | | -1.4+y/4=-7.8 |

Equations solver categories